Digital Affine Shear Transforms: Fast Realization and Applications in Image/Video Processing
نویسنده
چکیده
In this paper, we discuss the digitization and applications of smooth affine shear tight frames, a recently developed new class of directional multiscale representation systems. An affine wavelet tight frame is generated by isotropic dilations and translations of directional wavelet generators, while an affine shear tight frame is generated by anisotropic dilations, shears, and translations of shearlet generators. These two tight frames are actually connected in the sense that an affine shear tight frame can be obtained from an affine wavelet tight frame through subsampling. Consequently, an affine shear tight frame has an underlying filter bank from the MRA structure of its associated affine wavelet tight frame. We discuss the digitization of digital affine shear filter banks associated with the affine shear tight frames. Moreover, we provide the detailed algorithmic steps for both the forward and backward digital affine shear transforms. Analysis of the redundancy rate and computational complexity shows that the redundancy rate of the digital affine shear transforms does not increase with respect to the number of directions and the computational complexity is proportional to the redundancy rate and the FFT time for a fixed size of input data. Numerical experiments and comparisons in image/video processing show the advantages of our digital affine shear transforms over many other state-of-the-art frame-based directional transforms.
منابع مشابه
Integer fast lapped transforms based on direct-lifting of DCTs for lossy-to-lossless image coding
The discrete cosine transforms (DCTs) have found wide applications in image/video compression (image coding). DCT-based lapped transforms (LTs), called fast LTs (FLTs), overcome blocking artifacts generated at low bit rate image coding by DCT while keeping fast implementation. This paper presents a realization of more effective integer FLT (IntFLT) for lossy-to-lossless image coding, which is u...
متن کاملFace Recognition using an Affine Sparse Coding approach
Sparse coding is an unsupervised method which learns a set of over-complete bases to represent data such as image and video. Sparse coding has increasing attraction for image classification applications in recent years. But in the cases where we have some similar images from different classes, such as face recognition applications, different images may be classified into the same class, and hen...
متن کاملUltra-Fast Image Reconstruction of Tomosynthesis Mammography Using GPU
Digital Breast Tomosynthesis (DBT) is a technology that creates three dimensional (3D) images of breast tissue. Tomosynthesis mammography detects lesions that are not detectable with other imaging systems. If image reconstruction time is in the order of seconds, we can use Tomosynthesis systems to perform Tomosynthesis-guided Interventional procedures. This research has been designed to study u...
متن کاملDesign and Implementation of Digital Demodulator for Frequency Modulated CW Radar (RESEARCH NOTE)
Radar Signal Processing has been an interesting area of research for realization of programmable digital signal processor using VLSI design techniques. Digital Signal Processing (DSP) algorithms have been an integral design methodology for implementation of high speed application specific real-time systems especially for high resolution radar. CORDIC algorithm, in recent times, is turned out to...
متن کاملO-11: Dynamics of Flagellar Force Generated by A Hyperactivated Spermatozoon
Background: To clarify the mechanism of sperm penetration through the zona pellucida, the flagellar force generated by a hyperactivated spermatozoon was evaluated using the resistive force theory applied to the hyperactivated flagellar waves that were obtained from the mammalian spermatozoa. Materials and Methods: The hydrodynamic calculation of the flagellar force of the activated (non-hyperac...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Imaging Sciences
دوره 9 شماره
صفحات -
تاریخ انتشار 2016